

PCU 8610 / 8620

User manual

Contents

1.	Mounting and safety instructions	3
2.	2. General information	
3.	Description	5
4.	Scope of delivery	5
5.	Input circuit_	5
6.	Assembly	_6
	6.1. Grounding	
7.	Installation	7
	7.1. Pre-programming	7
	7.2. Input level	
	7.3. Output level	
8.	General programming	8
•-	8.1. Software installation	8
	8.1.1. Installation of the driver	
	8.1.2. Installation of the programming software	10
	8.2. Programming of the device parameters	10
	8.2.1. Input parameters SAT reception	
	8.2.2. Output parameters DVB-C	
	8.2.3. Output parameters DVB-T	14
	8.3. Function > Service list< (Program list)	15
	8.3.1. Delete and add Services (Programs)	
	8.3.3. SID-Remapping – manual assignment of Service-IDs	18 19
	8.3.4. NIT-processing (Network Information Table)	
	8.4. Storage of the programming	33
	8.4.1. Storage of settings	33
	8.4.2. Loading of settings	33
	8.5. LAN function	34
	8.6. Diagnostics	
	8.7. LED key	35
	8.8. Firmware update	
	8.8.1. Firmware version overview	
	8.8.3. Password function	
9.	Application examples_	40
	9.1. Application examples with reference to the input circuit	
10	. Technical data	43

1. Mounting and safety instructions

Attention

The rated voltage stated on the device must correspond with the mains voltage. The instructions for operating the device must be observed.

Grounding and potential equalization

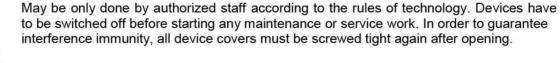
Please establish grounding and perform potential equalization before initial startup.

Connection cable

Always install the connection cables with a loop so that no condensed water can penetrate along the cable.

Install only on a solid, plane and at most fire-resistant surface. Avoid strong magnetic fields in the surroundings. Too strong heat effect or accumulation of heat will have an adverse effect on the durability. Don't mount directly over or nearby heating systems, open fire sources or the like, where the device is exposed to heat radiation or oil vapours. Don't block the ventilation slots of devices fitted with fans or heatsinks, as this will cause heat to build up inside the devices and may cause fire. Free air circulation is absolutely necessary to permit the device to function properly. It's imperative to observe the mounting position!

Moisture


Protect the device from high humidity, dripping and splashing water. If there is condensation, wait until the device is completely dry. Operating environment according to the specified IP protection class.

Caution! Danger of life!

According to the currently valid version of EN 60728-11, coaxial receiving and distribution systems must meet the safety requirements regarding grounding, potential equalization, etc., otherwise damage to the product, fire or other hazards may occur. Electrical fuses may only be replaced by authorised specialist persons. For the replacement of electric fuses, only same type and amperage have to be used. In case of damage the device has to be taken out of service.

Mounting and service works

Thunderstorm

Do not carry out maintenance or repair work on the device due to higher risk of lightning strike.

Ambient temperature

Operation and storage only within the specified temperature range.

Termination

Not used receiver and trunk line outputs have to be terminated with 75 Ohm-resistors.

Caution! Laser beam -> risk of accidents due to blinding!

Don't look into the laser beam or at direct reflexes of reflecting or polished surfaces. There is a danger of injury to the eyes.

Recycling

All of our packaging materials (packaging, identification sheet, plastic foil and bag) are fully recyclable.

ATTENTION

This module contains ESD components! (ESD = Electrostatic Sensitive Device). An electrostatic discharge is an electrical current pulse, which can flow also through an electrically insulated material, when triggered by large voltage difference.

To ensure the reliability of ESD components, it is necessary to consider their most important handling rules: Electrostatic sensitive components can be processed only on electrostatic protected area (EPA)!

- Pay attention permanently to potential equalization (equipotential bonding)!
- Use wrist straps, approved footwear for personnel grounding!
- Avoid electrostatically chargeable materials such as normal PE, PVC, polystyrene!
- Avoid electrostatic fields >100 V/cm!
- Use only labeled and defined packing and transportation materials!

Damage caused by faulty connections and / or improper handling are excluded from any liability.

Waste disposal

Electronic equipment is not household waste but should be properly disposed on electrical and electronic equipment waste - in accordance with Directive 2002/96/EC OF THE EUROPEAN PARLIAMENT AND COUNCIL.

Please take this device at the end of its use for proper disposal at the designated public collection points.

WEEE-Reg.-Nr. DE 51035844

2. General information

The new compact HDTV-headends from the PCU 8600-series are implementing signals from eight satellite transponders into eight DVB-C or DVB-T channels, optionally. With the built-in 4x8 switching matrix, four freely selectable SAT IF levels can be switched to the eight tuners.

An intervention in the transport stream is possible to delete such programs, to adapt NIT / ONID data or to implement a program assignment using the LCN function. The possibility of allocating new TS IDs or SIDs via the remapping function completes the practical functionality of the PCU 8600-series.

Special features of the Polytron compact headends are temperature-controlled fans as part of the Polytron long-life concept and the intuitive programming of devices using the standard built-in control options via USB and LAN. All models of the PCU compact headend series can be combined via a common NIT table.

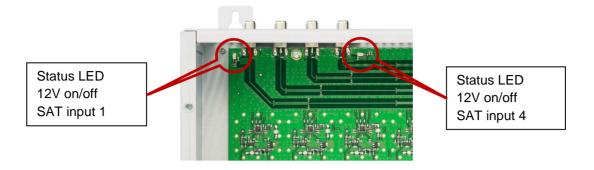
The quality of every single "Made in Germany" headend of the PCU 8600-series is ensured by a 24 hours test run prior to delivery.

3. Description

The compact headend PCU 86x0 from POLYTRON converts eight input signals (DVB-S/S2) into DVB-C/DVB-T output signals. For example, it's conceivable to use the device as free-to-air basic supply in a small boarding house or hotel, because around 40 programmes of eight transponders are already available. The headend can easily and quickly be programmed via the USB interface. No knowledge whatsoever the assigning and administration of IP addresses is required for this. The selected settings can be printed and saved and also transferred to other devices with a USB-stick. Due to the integrated LAN connection, it is possible to remotely control all parameters. The headend works in the frequency range 112 to 860 MHz and converts the selected satellite transponders completely including the additional services Teletext, EPG etc. The output is also suitable for adjacent channels and has a level of 90 dBµV. The PCU 86x0 is equipped with an energy-saving switching power supply which also serves for the supply of the LNB (input SAT 1 and SAT 4).

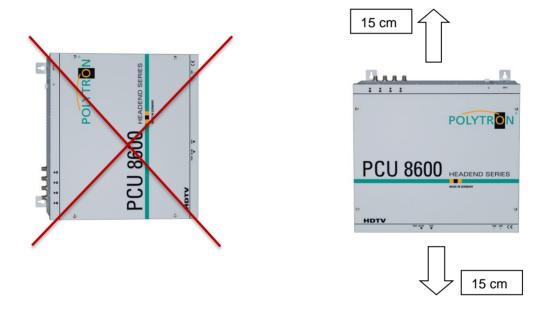
PCU 8610 = integrated 4x8 switch board / output modulation ex works DVB-C

PCU 8620 = integrated 4x8 switch board / output modulation ex works DVB-T

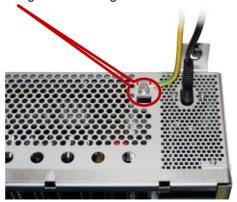

4. Scope of delivery

- 1 x PCU 86x0
- 1 x Power cable
- 1 x USB-cable
- 1 x USB-Stick (Programming software)
- 1 x LAN patch cable
- 1 x Operating instructions
- 1 x Installation accessories

5. Input circuit


In the case of the PCU 86x0, the signals are fed to the tuners via an input switching matrix. There are four inputs for SAT signals. With the 4x8 matrix, four freely selectable SAT-IF levels can be switched to the eight tuners. Here, a transponder is selected and converted into a freely selectable output frequency between 112 - 860 MHz. As factory default, there is an additional 12V DC input for LNB supply on the input SAT 1 and SAT 4. If required, the SAT IF signals can also be fed directly to the input tuners (see point 9.1.). These are eight equal inputs each with 12V DC voltage for LNB supply. The operating states are indicated by LEDs.

6. Assembly


The installation of the compact headend must take place in a well ventilated room. The ambient temperature must not be more than 45°C. It must be ensured that the air can circulate through the ventilation holes. There must be at least 15 cm of space around the device, so that the air can circulate properly. The plug must be pulled from the socket before installation or work on the cabling.

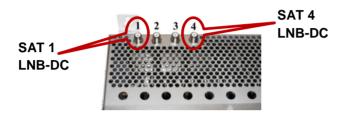
6.1. Grounding

The device must be grounded in accordance with EN 60728-11.

- Strip approx. 15 mm of the cable insulation of the grounding cable (4mm²).
- Push stripped end under the grounding screw and tighten the screw.

7. Installation

Connection of the Input Signals


Connect SAT signals directly or via splitter to the SAT tuner inputs.

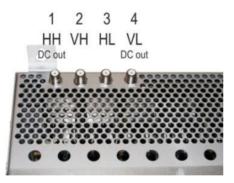
At the input SAT 1 and SAT 4, a 12V DC voltage is applied for the LNB supply.

Please note that the consumption of each input must not exceed 250 mA.

Connect the various SAT levels to the four inputs (SAT 1, SAT 2, SAT 3, SAT 4) - see also point 9.ff.

It is also possible to connect SAT levels of different LNBs.

The LNB voltage is fixed to the inputs SAT 1 and SAT 4.


Please note that a Quattro LNB (e.g. Polytron OSP AP 95/96) is required.

If the LED for the LNB supply is not lit, the LNB supply is interrupted or disturbed.

7.1. Pre-programming

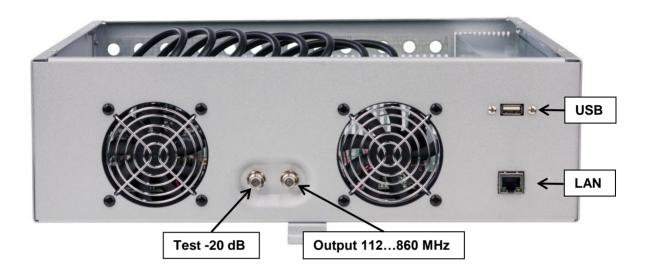
The inputs and outputs of the device are pre-programmed ex-factory with a German standard frequency allocation. A separate supplementary sheet with the pre-programming is enclosed with the device.

To receive the pre-programmed ASTRA transponders, the SAT inputs must be connected as follows:

Connection assignment for preprogramming

7.2. Input level

In order to ensure flawless reception, make sure that the level at the inputs is between **50** and **80 dBµV**. If the input level is too high, an attenuator is to be used.



When receiving digital signals it is advantageous to have a lower input level instead of an excessively high one.

If the input level is too high, an attenuator is to be used.

7.3. Output level

Upon delivery, the output level is **90 dBµV**. This can be changed via the device programming. There is an output level reduced by 20 dB at the TEST socket.

8. General programming

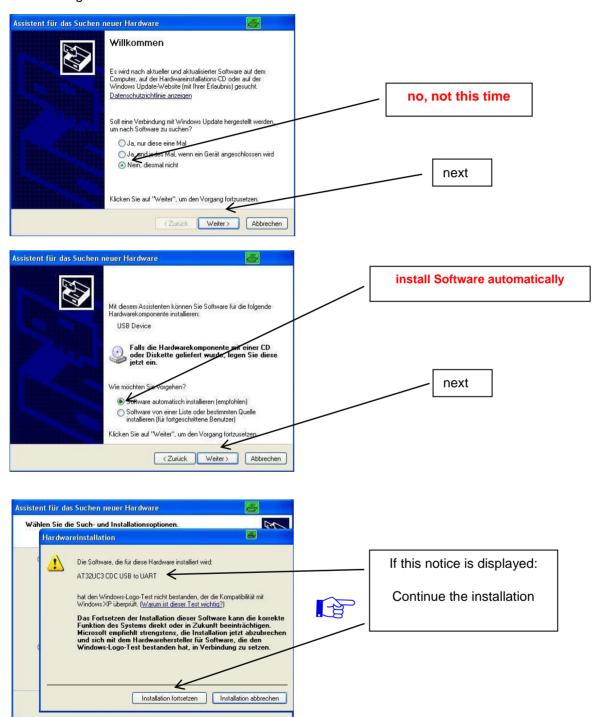
After the mains cable is connected, the device runs through an internal routine and all 4 channels are set with the previously stored data. During this, the **status LED** next to the USB socket flashes green.

Only after the **status LED** is <u>continuously</u> green or orange, contact is possible between PCU 86x0 and PC/Laptop.

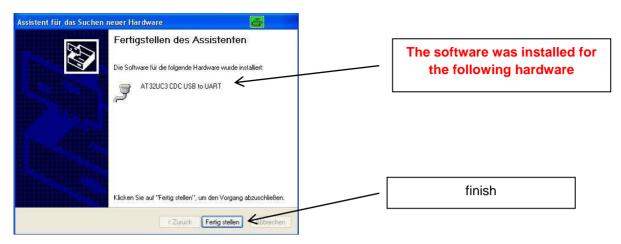
8.1. Software installation

Download the software package from the homepage www.polytron.de (satc12_Vxxx.zip) and unzip in the directory of your choice (e.g. C:\ PCU 86x0).

The software can also be loaded from the enclosed USB stick.



8.1.1. Installation of the driver


Start Instal driver.cmd

Follow the instructions on the screen.

In some first installations the following dialog can appear. This depends on the operating system. Carry out the following instructions and select the selection fields:

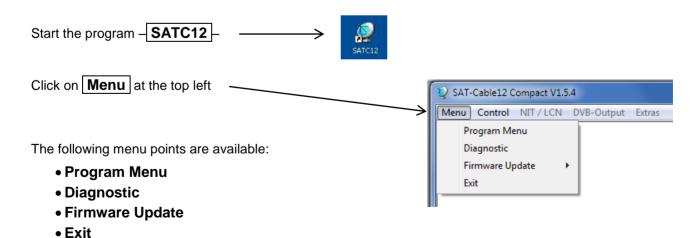
→ The installation of the driver software is now complete.

8.1.2. Installation of the programming software

Install the software by starting the "Setup.exe" program in the desired folder.

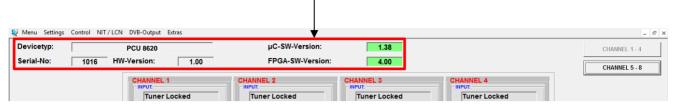
Follow the instructions on the screen.

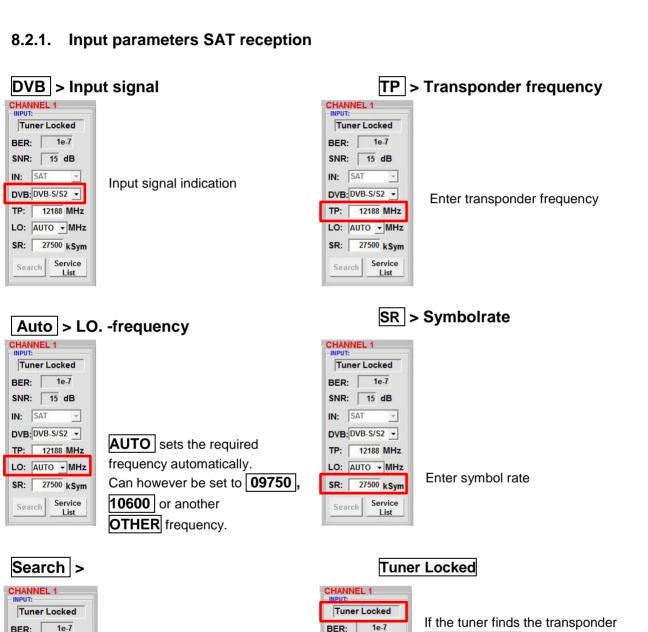
Close the screen displays once the installation has ended.

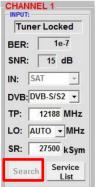


After the installation of the programming software on the PC, the PCU 86x0 can be connected to the PC with an USB cable.

Only connect the device to the PC once the software installation has been completed.


8.2. Programming of the device parameters



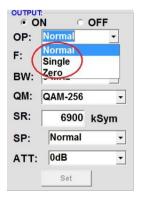

Select **Program Menu**: all adjustments of the input and output parameters are carried out here. After calling on the menu, all 8 channels and the respective *adjusted parameters are displayed*.

In the top part of the menu, the device data is displayed, such as type, serial number, hardware version and the software states for CPU and FPGA (software is up-to-date, if the corresponding field is highlighted in green).

After the button **Search** has been activated, the data is accepted and the desired transponder is set.

If the tuner finds the transponder **Tuner Locked** is displayed in the upper field.

Receiving Conditions

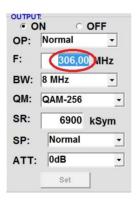


The quality of the input signal can be evaluated using the bit error ratio

BER and the signal-to-noise ratio SNR.

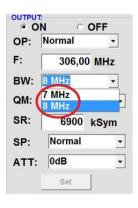
8.2.2. Output parameters DVB-C

OP > Operating Mode

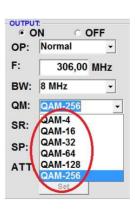


Normal> normal mode

Single> single carrier for level measurement with an analog antenna measuring device

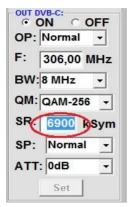

Zero > digital channel with content 0 (constant level without fluctuations)

F > Output Frequency

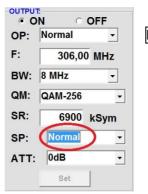

Frequency freely selectable. It is recommended to stick to the corresponding TV standard channel spacing. The frequency of the channel middle is set. (e.g. channel 21, 410- 478 MHz, set 474 MHz)

BW > Bandwidth

Choose bandwidth depending on output frequency between 7 MHz and 8 MHz

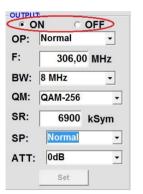

QM > QAM Mode

Setting of the possible QAM mode (16, 32, 64, 128, 256) dependent on the data rate of the input transponder.

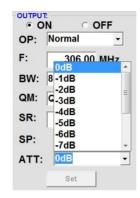


SR > Symbol Rate

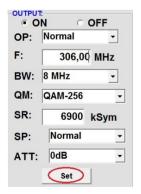
Up to 7.200 kilo symbols/ sec. (used setting in cable networks: 256 QAM / SR 6.900).


SP > Spectrum

Normal > normal mode


Inverted > Useful signal can be inverted in its spectral position. Inversion is only necessary in exceptional cases.

On OFF > Switching Off Output Channel


If not all 4 output channels are to be assigned, each channel can be switched off individually with **OFF**.

ATT > Output Level

The output level at the output is $90dB\mu V$ and can be weakened in each channel by up to 12 dB in 1dB steps.

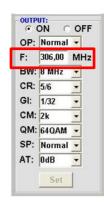
Set > Accept Programming

After the setting of all parameters press the **Set** button. With this, the adjusted data is accepted. Repeat steps for other channels.

N.B.: The DVB-C / QAM receivers must be programmed in accordance with the set parameters (search).

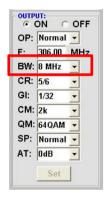
8.2.3. Output parameters DVB-T

OP > Operating Mode

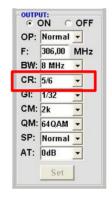

OUTPUT: ON OFF OP: Normal F: 306,00 MHz BW: 8 MHz CR: 5/6 GI: 1/32 CM: 2k QM: 64QAM SP: Normal AT: 0dB Set

Normal> normal mode

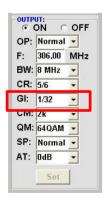
Single> single carrier for level measurement with an analog antenna measuring device


Zero > digital channel with content 0 (constant level without fluctuations)

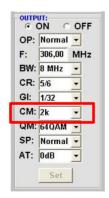
F > Output Frequency


Frequency freely selectable.
It is recommended to stick
to the corresponding
TV standard channel spacing.
The frequency of the channel middle is set.
(e.g. channel 21, 410- 478 MHz, set 474 MHz)

BW > Bandwidth

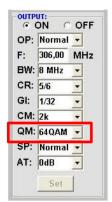

Choose bandwidth depending on output frequency between 7 MHz and 8 MHz

CR > Code Rate

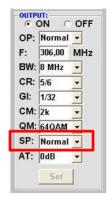

Setting of the possible Code rate (1/2, 2/3, 3/4, 5/6, 7/8)

GI > Guard Intervall

Setting of the possible Guard intervall (1/4, 1/8, 1/16, 1/32)

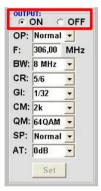

CM > Carrier Modulation

Setting of the possible carrier (2k, 8k)

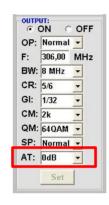


QM > QAM Mode

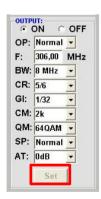
Setting QAM mode (16, 32, 64)


SP > Spectrum

Normal > normal mode


Inverted > Useful signal can be inverted in its spectral position. Inversion is only necessary in exceptional cases.

On OFF > Switching Off Output Channel


If not all 4 output channels are to be assigned, each channel can be switched off individually with **OFF**.

ATT > Output Level

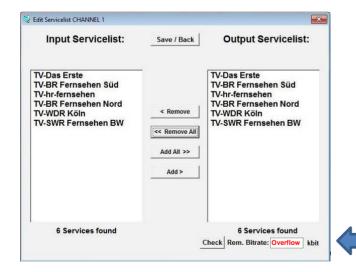
The output level at the output is $90dB\mu V$ and can be weakened in each channel by up to 12 dB in 1dB steps.

Set > Accept Programming

After the setting of all parameters press the **Set** button. With this, the adjusted data is accepted. Repeat steps for other channels.

N.B.: The DVB-T / COF receivers must be programmed in accordance with the set parameters (search).

8.3. Function >Service List<


If certain services within a transponder are not desired at the output, they can be removed.

8.3.1. Delete and add services (programs)

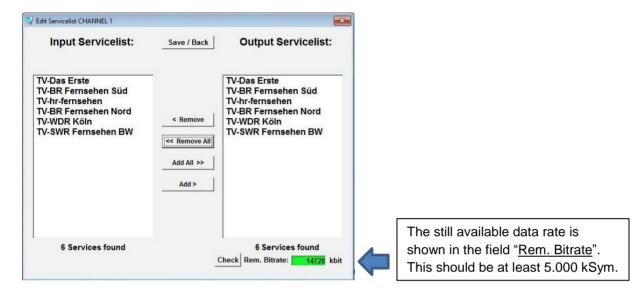
Clicking on this button opens the following window. The list of services available at the input is shown on the left. On the right, one can see the services contained in the output signal.

If the data rate at the output is too high, the word "Overflow" appears in the field "Rem. Bitrate". This means that the data rate is too high for the set parameters, and services must be removed. Undesired services can of course also be deleted if there is no overflow.

The field Bitrate is marked by colors. **Green** means: The remaining bitrate is higher than 10000 kSym.

Yellow means: The remaining bitrate is less than 10000 kSym.

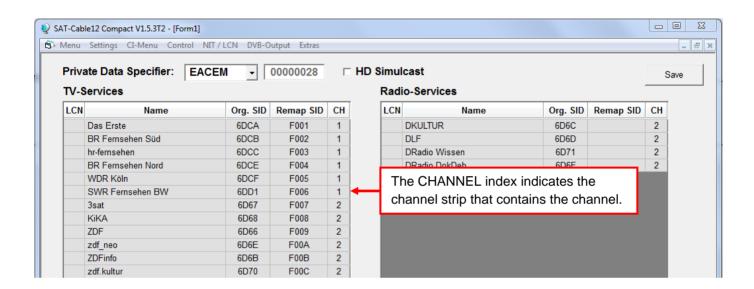
Red means: The remaining bitrate is less than 5000 kSym.

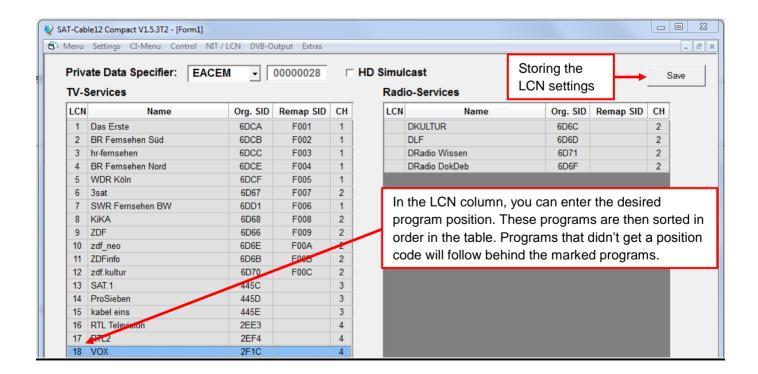

Overflow means: The data rate is too high in accordance to the adjusted DVB-C or DVB-T parameters.

By clicking on a service in the input list and clicking on the command **Add**, this service is added to the output list (also double-clicking on a service in the input list automatically adds it to the output list).

Clicking on a service in the output list and clicking on the command **Remove** removes this service from the output list (also double-clicking on a service in the output list removes the service automatically).

By single-clicking on the **Save/Back** button, the output list is saved and the window is automatically closed. If you want to choose only a few services from a transponder containing many services, you can first click on **Remove ALL** and then select the required services.




8.3.2. LCN function for the allocation of program positions

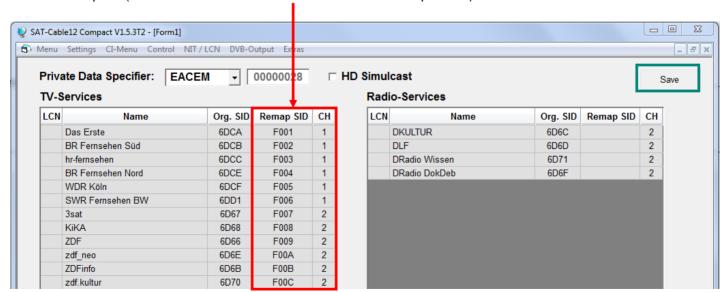
Precondition is that the TVs/receivers support LCN.

→ Click on LCN / Remap Settings.

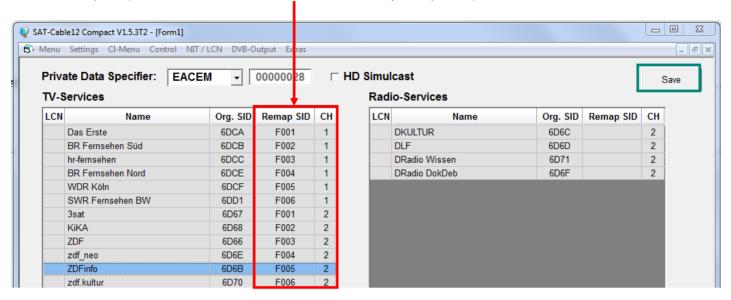
8.3.3. SID-Remapping – manual assignment of Service-IDs

- With the functionality SID-remapping new programs can be transmitted without retuning the receivers.
- Selected services are assigned with a new Service ID = (SID).
- Important: Please ensure that a unique SID is assigned to the programs which are changed.
- The max. number of programs to be remapped must be assigned and scanned at first installation (some may be used as "placeholder").
 - changes to less numbers of programs -> no new channel search is needed
 - changes to higher numbers of programs -> new channel search is required
- Important: If service-remapping should be applied, this adjustment has to be done before creating the combined NIT.

Settings:


→ Click on the tab NIT / LCN.

→ Afterwards click on LCN / Remap Settings.



→ Example 1 (continuous allocation of Service IDs over all transponders):

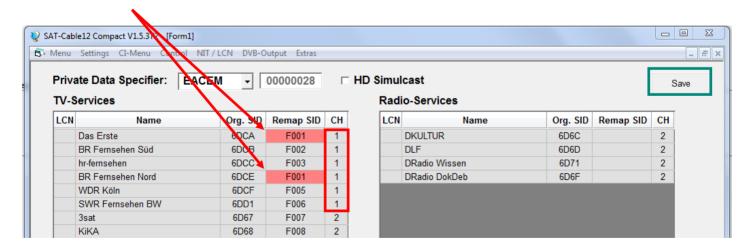
→ Example 2 (continuous allocation of Service IDs for every transponder):

Service IDs are entered manually. We recommend to use hexadecimal values within the range of F001 and FFFE.

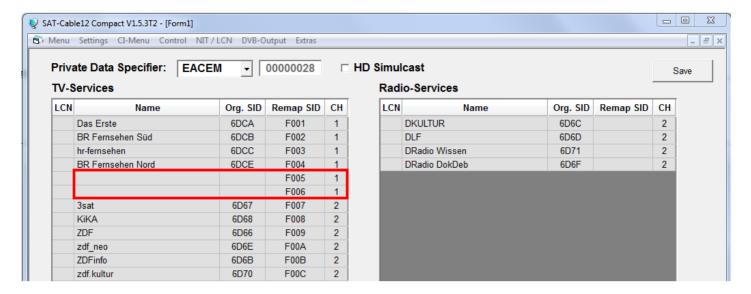
Important: The allocation of the Service ID can be continuously (example 1).

A service is referenced inside of a transponder by the unique pairing of ONID/TSID/SID.

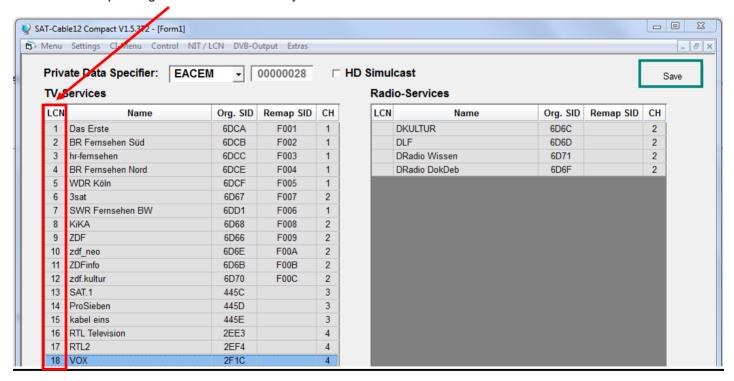
That's why the same SID can be used again in another transponder (example 2).


Within one transponder the same SID must not be used twice.

Click Save to apply the changes.


Indication of fault case (the same SID is used twice for transponder 1):

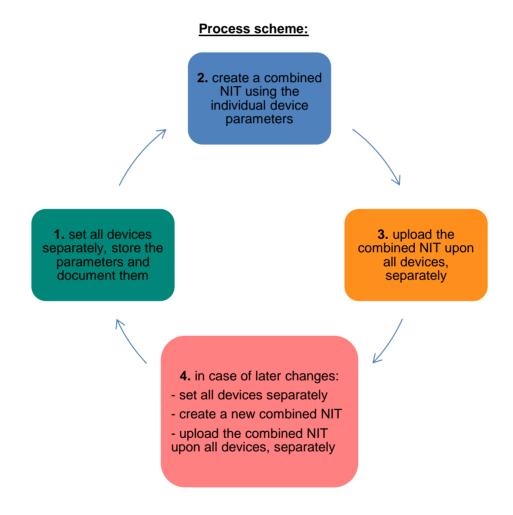
Error correction: By manually change of the SID and Save.


→ Indication for the case, that instead of originally 6 programs of transponder 1 only 4 programs were fed into after changing:

<u>Important:</u> A new channel search is not required for this example but the picture on the receivers site will remain "black" for the 2 services with the SID F005 and F006.

Add LCN numbers:

Enter the corresponding LCN numbers manually.

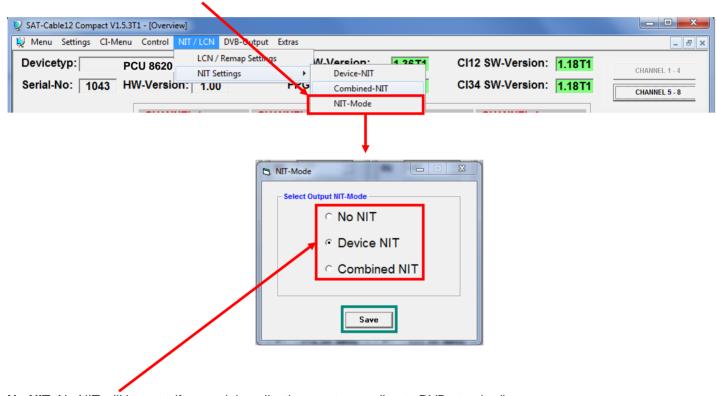

Click **Save** to apply the changes.

8.3.4. NIT-processing (Network Information Table)

- NIT stands for a transponder table which includes information for direct reception of digital programmes.
- NIT-processing requires advanced skills of DVB-standards!
- The combined NIT includes all relevant data of all connected devices and contains information about all receivable programmes in the network.
- Important: Place output channels within a combined NIT onto the lower frequency range, if possible. Many
 receivers start scanning at the lower end of the band ensuring that the combined NIT is found at
 first. This is particularly the case if existing systems with devices from other manufacturers will
 be upgraded and the combined NIT is missing.
- Important: The skilled employee should create a precise system and programming plan before installation/programming.
- <u>Important:</u> If service-remapping should be applied, this adjustment has to be done <u>before</u>
 creating the combined NIT.

Changes to the NIT table(s) first become effective after closing the PC software.

Please wait approx. 1 min. after closing the PC software until the changes become effective in all relevant systems.



Settings:

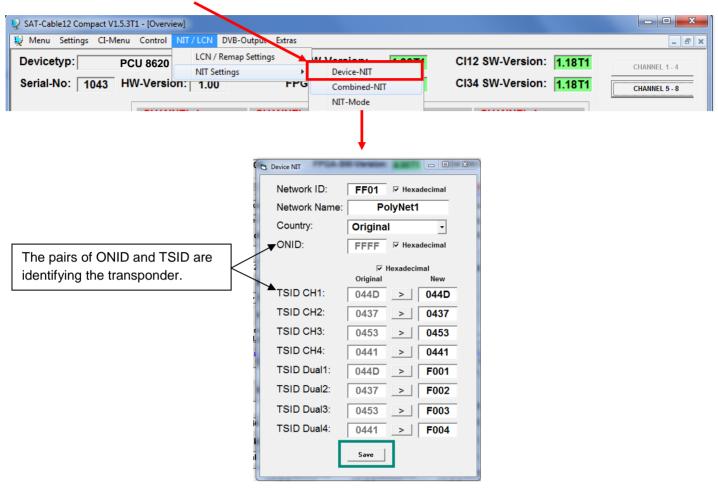
→ Click on the tab NIT / LCN.

→ Afterwards click on **NIT Mode** to determine which NIT should be used.

No NIT: No NIT will be sent (for special applications, not according to DVB-standard).

Device NIT: A valid NIT will be sent automatically for the actual device (factory setting).

Combined NIT: A cross-device NIT will be sent. Assumed, that the user has created and stored a cross-device NIT onto the device.


Click Save to apply the change.

Device NIT:

→ After clicking on **Device NIT** following screen window appears:

Note: Be aware of the plausibility and/or overlaps of the data before being entered!

Network ID: DVB-C at the output -> factory setting **FF01** (modification possible)

DVB-T at the output -> factory setting 3002 (modification possible)

Network Name: Can be defined by the user.

Country: DVB-C at the output -> factory setting **Original** (modification possible, by choosing **Original** the

received ONID from the satellite will be used)

DVB-T at the output -> factory setting **Germany** (modification possible)

The country setting should be the same as the receiver settings.

TSID New: If using the dual modulators, the original TSID is assigned twice. Therefore a new TSID has to be

created in this box. We recommend to use hexadecimal values within the range of F001 and FFFE.

Click **Save** to apply the changes.

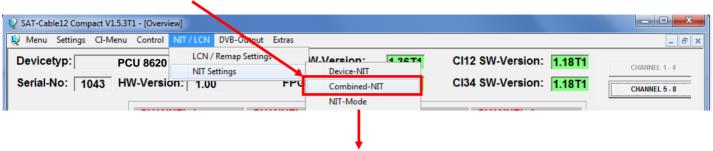
Combined NIT:

The settings of the individual devices must be stored before creating the combined NIT.

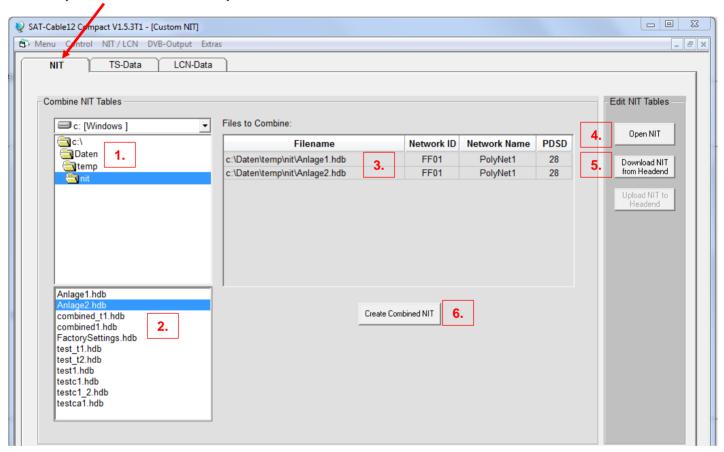
By choosing the menu point **Settings** it is possible to save existing settings on a PC/Laptop or to load it from a PC/Laptop.

With the menu point **Save Settings** it is possible to save the programming onto the PC/Laptop.

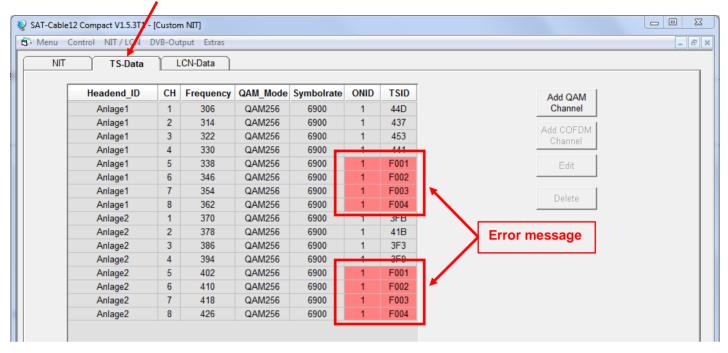
A folder and a file name (e.g. object) has to be entered. The file name must retain the ending .c12!!


The settings are also saved to an *.rtf-file. This file format can be opened, edited and printed with e.g. Microsoft Word, Open Office or WordPad.

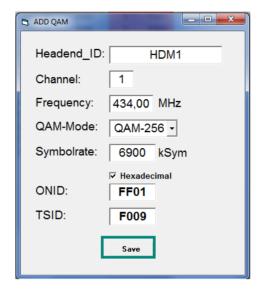
Additionally to that a *.hdb-file is created, which is needed to create a combined NIT.


All three files are located in the predetermined directory.

→ After selecting **Combined NIT** the screen window below appears:


→ By the **NIT** tab the individually devices could be combined.

- 1. Search the folder containing the setting files of the individual devices and select it.
- 2. Double-click on the required *.hdb-files.
- 3. The selected files will be listed under Files to Combine and can be deselected by double-click, if desired.
- 4. If a combined NIT already exists, press button Open NIT to load it from the PC/Laptop.
- 5. Download of a stored NIT-table from the headend.
- **6.** Click on **Create Combined NIT** after entering and checking **all** data to create the combined NIT. This NIT will be stored in a folder on the PC/Laptop.



- This user interface allows to check the programming data and to add an external output channel (DVB-C = QAM or DVB-T = COFDM) to the list.
- The plausibility check of the pre-programmed data runs automatically.
- Existing plausibility problems and overlaps will be highlighted with coloured background (see example above). A few combinations ONID/TSID of the device 1 and 2 (Anlage1 / 2) in the example above are the same, which must be avoided within a network.
- Important: Set all devices separately first. Afterwards create a new combined NIT and upload the combined NIT upon all devices, separately!
- Note: At the user interface only manual added entries can be modified!

→ Adding of an external output channel (e.g. additional modulator) via the TS-Data tab. Click on the tab Add QAM Channel (DVB-C) or Add COFDM Channel (DVB-T). Following menu appears:

Note: Be aware of the plausibility and/or overlaps of the data before being entered!

Headend ID: Can be defined by the user. Should be documented for later reference.

Channel: Set the individual playback channel.

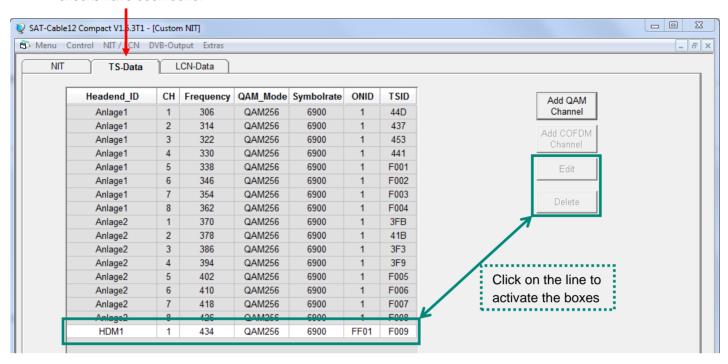
<u>Frequency:</u> Enter the frequency of the output channel.

<u>QAM-Mode:</u> Select the relevant QAM-Mode.

<u>Symbolrate:</u> Define the required symbol rate.

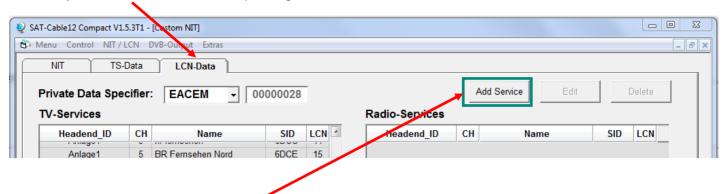
ONID / TSID: Enter the ONID and the TSID. We recommend to use hexadecimal values within the range of F001

and FFFE.

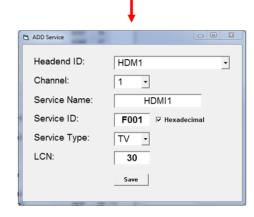


Click **Save** to apply the changes.

→ The data of the added output channel will be shown after storing and after the plausibility and overlaps checks have been done:


Note: Manually added output channels will be displayed with a white background.

The functions **Edit** and **Delete** are only available for manually added output channels.


Click on the corresponding line to activate the boxes.

→ By the LCN-Data tab the corresponding data of the combined NIT will be shown.

Click on **Add Service** to add LCN to the "manually added" channels. Following input mask appears:

Note: Be aware of the plausibility and/or overlaps of the data before being entered!

Headend ID: Select the added device.

<u>Channel:</u> Set the individual playback channel.

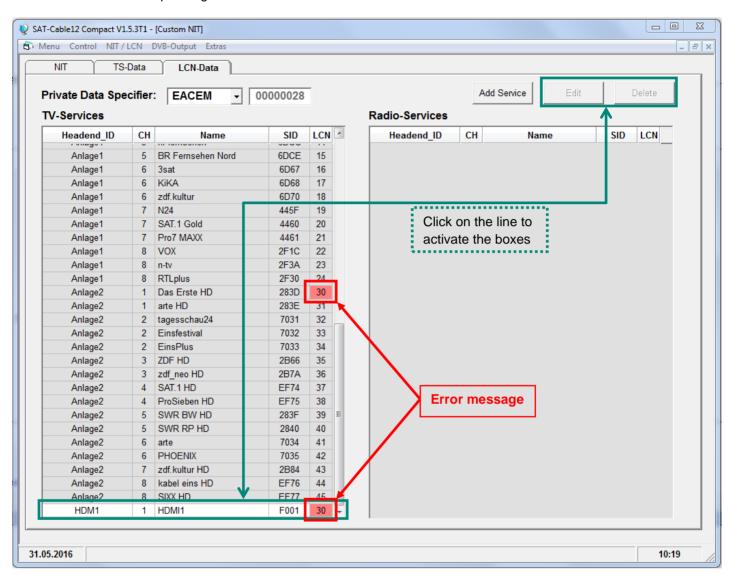
Service Name: Can be defined by the user.

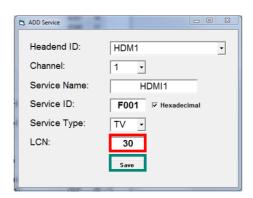
Service ID: Enter a Service ID. We recommend to use hexadecimal values within the range of F001 and FFFE.

<u>Service Type:</u> Choice between the options TV and Radio.

<u>LCN:</u> Determination of the program number in the LCN-system.

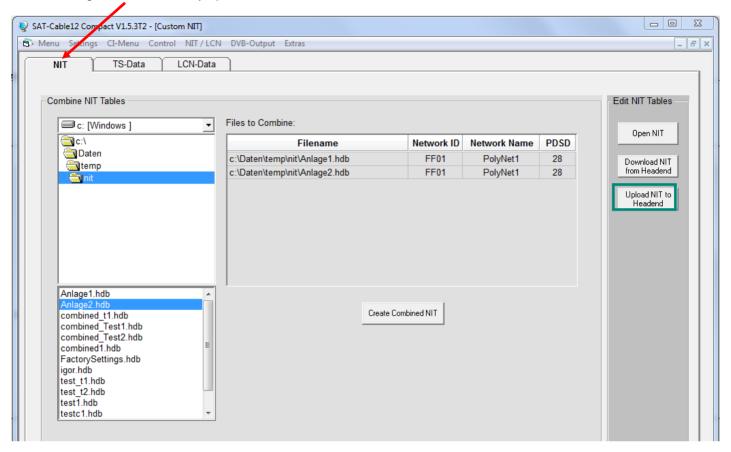
Click **Save** to apply the changes.




Note: Manually added output channels will be displayed with a white background.

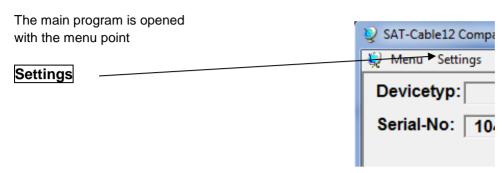
The functions **Edit** and **Delete** are only available for manually added output channels.

Click on the corresponding line to activate the boxes.

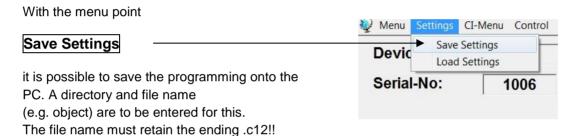


- The plausibility check of the pre-programmed data runs automatically.
- Existing plausibility problems and overlaps will be highlighted in coloured background (see example above). In the example above two program numbers in the LCN-system are the same, which must be avoided within a network.
- Error correction for the example above: Click on the LCN-program number of the line with the white background (HDMI1) and then click on **Edit**. Change the LCN-program number in the input mask accordingly and store the setting by click on **Save**.

→ Using the NIT tab, finally upload the combined NIT to the headends.

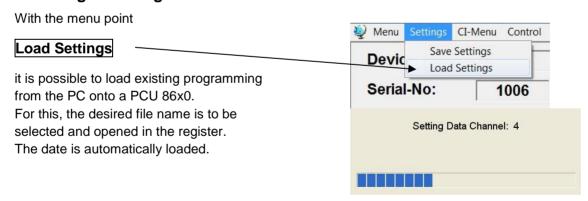


The button **Upload NIT to Headend** is now active. After clicking on this button the created "Combined NIT" is transferred to the device and transmitted to the output channels.



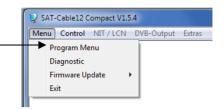
8.4. Storage of the programming

It is possible to save existing programming on a PC and/or to load it from a PC. Program combinations can thus be archived.



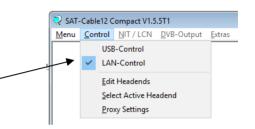
8.4.1. Storage of settings

The settings are also saved in an rtf-file. This file format can be opened, edited and printed with e.g. Microsoft Word, Open Office or WordPad.


8.4.2. Loading of settings

8.5. LAN function

Click on **Program Menu** to open the programming environment. The basic settings are loaded and the user interface is started.

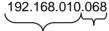


The PCU 86x0 possesses the IP address: 192.168.1.227 as a standard setting. If the system is used in a network with

If the system is used in a network with a different network address, the IP address of the PCU 86x0 must be accordingly altered.

This change is carried out under the menu point

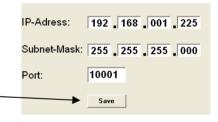
LAN-Control.



Example:

The PC operated in the network has the following settings:

IP address: (1



network share host share

The IP address of the PCU 86x0 must only differ in the last block (host share) compared with that of the connected PC. The figures 0, 255 and all figures already used are not permitted!

Example IP address: 192.168.010.100

All changes are saved with **Save**.

Please note:

The listed IP addresses are intended as examples.

All addresses must be adapted to the network at the location.

If this information is not known, the responsible

IT specialist should be contacted!

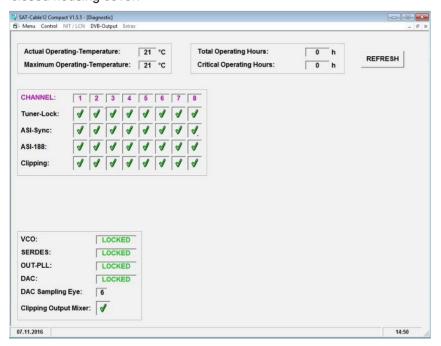
The progress of saving is displayed on the bar diagram.

This process can last up to a minute.

8.6. Diagnostics

The "Diagnostic" menu is for service purposes and can be helpful during error analysis by telephone on the **Hotline +49 (0)7081 1702-0.** The displayed data can be updated with **REFRESH**.

Menu Header Display:


Actual Operating Temperature: approx. current ambient temperature

Total Operating Hours: operating hours

Maximum Operating Temperature: maximum measured ambient temperature

Critical Operating Hours: operating hours at ambient temperature of over 45°C

The temperatures shown only correspond to the actual values in the case of correct, vertical installation with a closed housing cover.

8.7. **LED** key

a.) LNB green: 12V output voltage

off: no output voltage

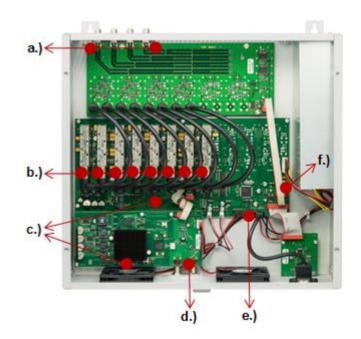
b.) Tuner green continuous: tuner logged

green flashing: tuner not logged

c.) FPGA / ASI green: configured, ready to operate

off: error

d.) RF green: output OK


off: error

e.) Status green: all tuners logged, ready for use

orange: different functions in programming

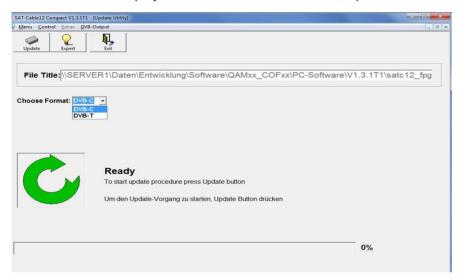
f.) 12 V green: 12 V power adaptor OK

off: power adaptor error

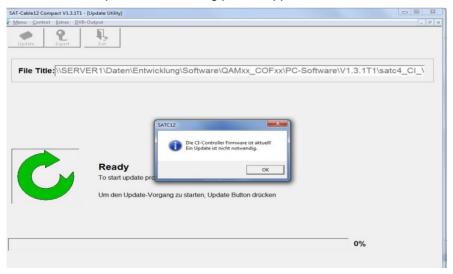
8.8. Firmware-update

The menu "firmware update" is used to refresh the firmware of the device. In this way, the basic software of the device will be updated.

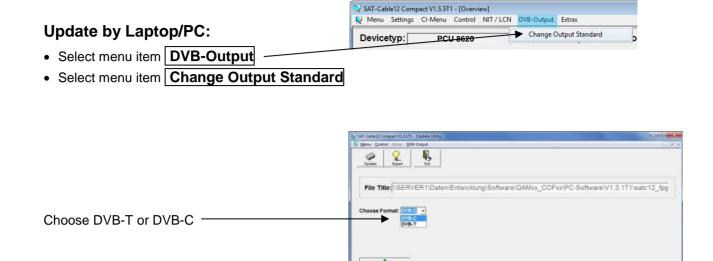
The programming of the input and output parameters carried out under 8.2 is not influenced by this.


8.8.1. Firmware version overview

The appropriate display boxes of the firmware overview are highlighted in coloured background. Green indicates that the firmware is up to date.


Yellow indicates that a new firmware is available.

Double click on the display box which shows the firmware, opens automatically the update menu.



If the firmware is up-to-date, following picture appears:

8.8.2. Changing the output signal

The FPGA update takes about 15 minutes and should under no circumstances be interrupted before!

After clicking on the **Update** button the new FPGA- Software will be loaded.

Important: Please follow the update instructions carefully. Do not switch off the power and unplug the power cord from the outlet. Both disregarding the instructions and interrupting the power supply during the firmware / FPGA update installation may interrupt the update process and cause the unit to stop responding or repair.

8.8.3. Password function

→ Protection against unauthorized access to the Program-Menu.

The password function isn't activated in the factory settings and can be switched on from μ C-SW-Version 1.31 on, like described as follows:

Start program [SATC12]

SATC12

Klick on Extras in the upper row.

• Klick on **Password Settings.** It appears following pop-up window, <u>please urgently note the serial no.</u> because this will be needed to reset the password, if required.

- Place a tick in the check-box to select Use Password.
- Enter the password (min.6 / max.10 digits) in the input field Password (consisting of letters, numbers or special characters in random sequence) and retype the password in the input field Retype Password.
- By clicking on Change Password a new password can be created.

Klick on **Save** to store the password-settings.

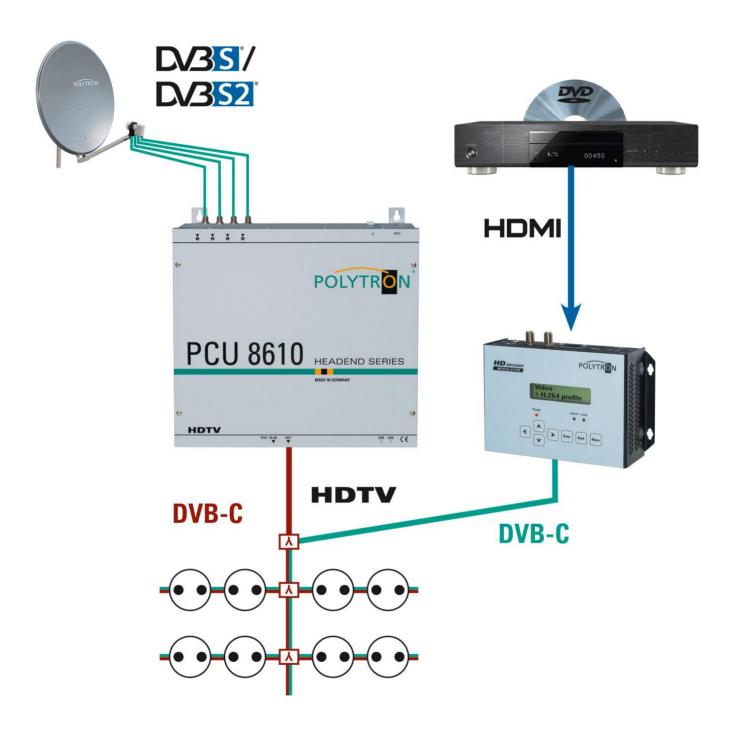
• Exit the program [SATC12] or go on with the settings, if necessary.

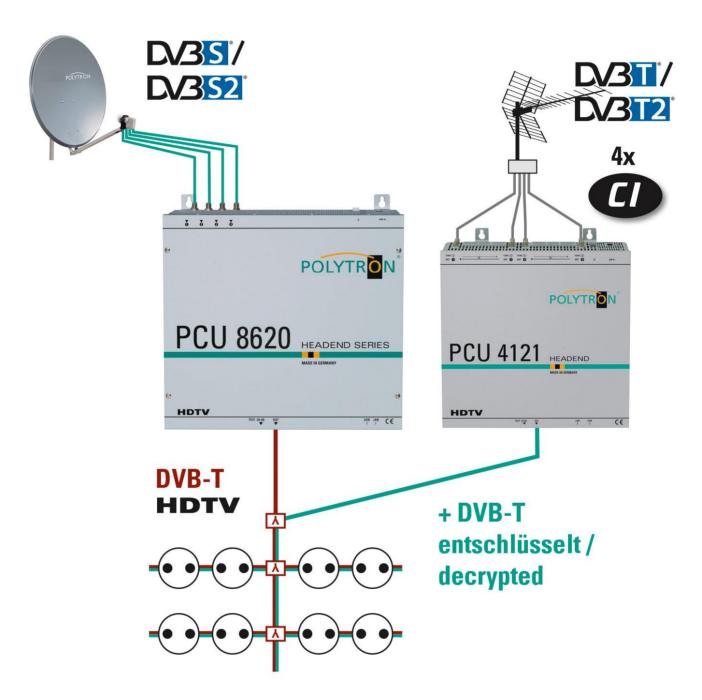
After next time starting the program [SATC12] please enter the password in the input field and then click on **OK** to confirm the password or click on **Cancel** to correct the password, if required.

→ Please note: In this pop-up window is no change of the password possible.

Should the password get lost or has fallen into oblivion we willingly help you relating to the generally password-reset. For this purpose we urgently need the serial-number of the device, as already mentioned on page 1. The serial-number you can also find on the label which is affixed on the outer side of the housing.

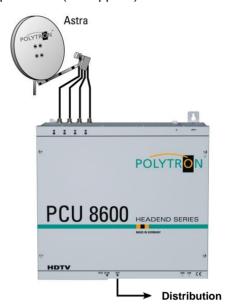
The generally password-reset can only be applied by POLYTRON, for this procedure you will get a new password to reactivate the access to the device again.


By removing the tick in the check-box **Use Password** you can certainly also <u>deactivate</u> the password function, but you will need the password to log on before.


9. Application examples

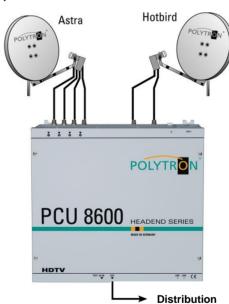
One satellite, all four polarization planes at input 1-4 in conjunction with HDMI signal feed:

One satellite, all four polarization planes at input 1-4 in conjunction with decrypted DVB-T/T2 programs:



9.1. Application examples with reference to the input circuit

Example 1: All tuner inputs are connected via the SAT input matrix (as supplied).



Example 2:

The tuner inputs are connected via the SAT input matrix and two additional polarization planes of another satellite via the **splitter FVS 3 (PQLYTRON-No.: 3061600)**.

Example 3:Up to eight SAT signals are connected directly to the SAT tuners.

10. Technical data

Typ / Type	PCU 8610	PCU 8620	
Artikel-Nr. / Article no.	5552260	5552265	
Eingänge / Inputs	8 (eingebaute 4x8-Schaltmatrix / built-in 4x8 switching matrix)		
Eingangspegel / Input level	5080 dBμV		
Demodulator			
DVB-S2/S			
SR DVB-S / QPSK	145 MS/s		
SR DVB-S2 / QPSK	145 MS/s		
SR DVB-S2 / 8PSK	145 MS/s		
Modulation	8PSK / QPSK		
CR DVB-S / QPSK	1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10		
CR DVB-S2 / 8PSK	3/5, 2/3, 3/4, 5/6, 8/9, 9/10		
Roll off	0.35, 0.20		
Ausgangsmodulation im Auslieferungszustand	DVB-C	DVB-T	
Output modulation ex works	umprogrammierbar auf / programmable to DVB-T	umprogrammierbar auf / programmable to DVB-C	
Ausgangskanäle / Output channels	8		
Frequenzbereich / Frequency range	112860 MHz		
Signalkonstellation / Signal constellation	16, 32, 64, 128, 256 QAM	QPSK, 16, 32, 64 QAM	
Symbolrate / Symbol rate	17,2 MS/s	1	
FEC	/	1/2, 2/3, 3/4, 5/6, 7/8	
Bandbreite / Bandwidth	7 / 8 MHz		
Anzahl der Träger / Number of carriers	/	2K	
Ausgangspegel / Output level	90 dBμV		
Regelbare Dämpfung je Kanal / Channel attenuation	012 dB		
MER	40 dB		
Leistungsaufnahme / Power consumption	49 W typ.		
Spannungsversorgung / Operating voltage	180265 V, 50/60 Hz		
Maße (B x H x T) / Dimensions (W x H x D)	380 x 360 x 125 mm		

Polytron-Vertrieb GmbH

Postfach 10 02 33 75313 Bad Wildbad Germany

Zentrale/Bestellannahme

H.Q. Order department + 49 (0)7081 1702 - 0

Technische Hotline

Technical hotline + 49 (0)7081 1702 - 0 Telefax + 49 (0)7081 1702 - 50

Internet http://www.polytron.de Email info@polytron.de

Technische Änderungen vorbehalten Subject to change without prior notice

Copyright © Polytron-Vertrieb GmbH